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ABSTRACT Parallel recordings of spike trains of several
single cortical neurons in behaving monkeys were analyzed as
a hidden Markov process. The parallel spike trains were
considered as a multivariate Poisson process whose vector
firing rates change with time. As a consequence of this
approach, the complete recording can be segmented into a
sequence of a few statistically discriminated hidden states,
whose dynamics are modeled as a first-order Markov chain.
The biological validity and benefits of this approach were
examined in several independent ways: (i) the statistical
consistency of the segmentation and its correspondence to the
behavior of the animal; (ii) direct measurement of the collec-
tive flips of activity, obtained by the model; and (iii) the
relation between the segmentation and the pair-wise short-
term cross-correlations between the recorded spike trains.
Comparison with surrogate data was also carried out for each
of the above examinations to assure their significance. Our
results indicated the existence of well-separated states of
activity, within which the firing rates were approximately
stationary. With our present data we could reliably discrim-
inate six to eight such states. The transitions between states
were fast and were associated with concomitant changes of
firing rates of several neurons. Different behavioral modes
and stimuli were consistently reflected by different states of
neural activity. Moreover, the pair-wise correlations between
neurons varied considerably between the different states,
supporting the hypothesis that these distinct states were
brought about by the cooperative action of many neurons.

While early sensory and late motor processes can be carried
out in parallel, many intermediate processes are carried out
serially (1-4). Our own introspective experience tells us that
our thought processes evolve serially one after the other. Some
current models of neural networks (5-7) also suggest a series
of quasi-stable states which follow each other in succession.

Usually, the analysis of the activity of single neurons is done
by looking at their firing rates in relation to some external
marker, such as a visual stimulus or a movement. In the work
presented here, we treat the activity of several single neurons,
which were recorded in parallel, as a spike-count vector-i.e.,
a vector whose first component is the number of spikes
generated by the first neuron in a given time window, the
second component is the spike count of the second neuron in
the same window, and so forth.

Until recently, almost no attempt was made to search for
experimental evidence that the brain, or some part of it, goes
through a sequence of distinct states.l In the present work we
examined whether spike count vectors can be regarded as the
output of a hidden Markov process which switches among
discrete states of underlying collective activity.

The HMM is a well-known technique of stochastic modeling
used so far mostly for speech and handwriting recognition (10).
Within this model, the observations are considered as stochas-
tic functions of a Markov process whose states are "hidden"-
i.e., not directly observable. There are well established ways of
estimating the model's parameters from training data, as well
as evaluating the probability of test data being generated by the
model. The model produced can also be used to impose
temporal segmentation on the data.

In the present context, the observations are the recorded
neural spike trains, whereas it is claimed that the emerging
states correspond to some underlying organization of the local
cortical activity. Our results show not only that such treatment
is possible but that it yields states which are specific to the
external events and to their behavioral significance and exhibit
distinct interaction patterns between the neurons. Preliminary
reports of some of the results described here were presented
in refs. 11 and 12.

EXPERIMENTAL METHODS
Firing times of neurons were obtained in experiments on
localization and short-term memory for space. In these exper-
iments, monkeys were trained to localize a source of light blink
and then, after a delay, to touch the target from which the light
blink was presented. The monkeys started a trial by touching
a ready key, then the central ready light was turned on. Three
to six seconds later, a visual cue was given in the form of a
200-ms light blink coming from either the left or the right.
Then, after a delay of 1-32 s, the color of the ready light
changed from red to orange (the GO signal), and the monkeys
had to release the ready key and touch the target from which
the cue was given. Correct responses were reinforced by a drop
of juice. This paradigm was called the GO mode. In this mode,
the monkeys almost always fixed their gaze on the ready light
in the first 4 s. As a control, the monkeys were also trained to
perform a different paradigm in which all the events were
identical to those of the GO mode, except that after the GO
signal the monkeys had to refrain from responding. This
paradigm was referred to as the NO-GO mode.
The monkeys were trained to switch between modes when

a set of lights was turned on for 3-4 s. Modes were switched
after four correct trials. In this way, one could study the
relation between brain activities and stimuli in two different
"sets of mind."
When the monkeys were fully trained (over 90% correct

performance), they were anesthetized and prepared for re-

Abbreviations: HMM, hidden Markov model; PSTH, poststimulus-
time histogram; NHPM, nonhomogeneous Poisson model.
tTo whom reprint requests should be addressed.
IWhile this report was being written, Radons brought to our attention
his work on hidden Markov model (HMM) analysis of spike trains
from the visual cortex of anesthetized monkeys (8). Another appli-
cation of HMM to neural activity (9) deals with the excitability
changes which follow a spike in a single neuron.
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cording of single-unit activity from the frontal areas around
the upper limb of the arcuate sulcus. These areas receive
connections from the somatosensory, the visual, and the
auditory areas and affect the motor areas (13, 14). In previous
studies, we found that over 40% of the units in these areas
modulate their firing rates in relation to one or another aspect
of this task. Electrodes for recording eye movements were also
implanted during this operation.
Upon recovery and retraining, activity was recorded daily

while the monkey performed the task.11. The results reported
here are based on data from two monkeys. On every recording
day, the simultaneous activity of 6-16 single units was re-
corded through six metal microelectrodes. The horizontal
distance between electrodes was 0.5-1.0 mm. The monkeys'
care and treatment were in accordance with the regulations of
the National Institutes of Health and the Hebrew University.

METHODS OF ANALYSIS
The vector of parallel, recorded spike trains was regarded as
the output of an HMM. Given the number of hidden states, the
parameters of the model are the Markov state transition
probabilities and the joint distribution of the spike trains at
each hidden state (8, 11). We assume that in every hidden state
the spike trains are independent, stationary Poisson processes
and that their state conditional distribution is specified by a
vector of firing rates. Fig. 1 illustrates this idea.
The HMM analysis allowed us to estimate these parameters

via the identification of a most likely hidden Markov process
that fits the recorded data. Using this trained model, we
obtained estimates of the probability of the system being in any
possible state at each point in time. The most probable
sequence of states obtained in this way provided a segmenta-
tion of the data.
Two methods of reconstructing anHMM from the recorded

data were examined. The goal of the first (supervised) method
was to identify and characterize the sequence of states which
followed a known external stimulus. The purpose of the second
(unsupervised) method was to parse the entire recorded data
without any specific reference to the external events.
The supervised analysis considered only the first 4 s of

activity during the delay which followed the spatial cue-a light
blink from the left or from the right. Typically, 70 repetitions
of the same stimulus were submitted to analysis. In this
analysis, we utilized a fine time resolution of 1 ms. The activity
of each neuron (firing or quiescent) at each millisecond was
considered as the output of the process. The Baum-Welch
algorithm (15) was used to estimate the state transition
probabilities and the expected spike rates of each neuron in
each state.
The modulations of firing rates of each neuron, following

each of the four stimuli, were evaluated by means of post-
stimulus-time histogram (PSTH) with variable bin sizes. The
PSTH is an estimator of the time-variable firing rate of a
neuron (16). The bin size of the PSTH was not fixed, as is
customary, but varied so as to contain 100 spikes per bin. This
yields a constant accuracy of estimation of the rates, at the
price of losing time resolution when the firing rates are low.
The unsupervised HMM was based on the measured, local

spike count of each neuron, obtained by sliding a 500-ms
window at 100-ms steps over all the data. Thus, training of this
model was carried out in a coarse time resolution. The spike
counts of all the neurons at any given instant within the 500-ms
window were considered as the vector output of the process.
By using the Baum-Welch algorithm, the HMM state param-

FIG. 1. Schematic description of a first-order HMM for the firing
rates. The system can be in one of four states at any given time step,
and its transition probabilities depend only on the current state. These
transition probabilities are represented in the diagram by the thickness
of the corresponding arrows. Samples of 4 s of observed firing patterns
of the eight neurons at every state are illustrated inside each box.
Notice that the states are characterized by the list (vector) of eight
firing rates and that no single unit can discriminate among the states.
All we observe about the system are the firing times of the neurons,
and from these observations we wish to reconstruct the complete
HMM.

eters (spike-rates vector) and state-transition probabilities
were estimated. This algorithm also provided the most likely
segmentation of the data into states (11).

RESULTS AND DISCUSSION
In this section we describe the results of several different
methods of analysis carried out in this work: (i) Segmentation
of the cortical activity. This was performed both in the local,
fine-resolution, supervised method and the global, coarse time
resolution, unsupervised method. We tested the significance of
the observed, sharp state flips by using surrogate data. (ii)
Prediction of behavior. Models trained on every one of the
four different behavioral modes following the cue (GO/NO-
GO, Left/Right) were tested for prediction of the actual
behavior of the monkey. Comparison of the HMM with the
nonhomogeneous Poisson model (NHPM) is also reported.
(iii) Direct measures of the collective cortical transitions. We
independently verified the sharp transitions exhibited by the
HMM analysis, both for the supervised (local) and unsuper-
vised (global) methods. (iv) Pair-wise cross-correlations. We
examined the pair-wise cross-correlations in each of the seg-
mented states and found that the correlation varied from state
to state. This analysis was performed on segments labeled by
the coarse-time resolution method.
As in most other applications ofHMM, the number of states

of the Markov process was determined through trial and error
to obtain good performance under a relatively low-
dimensional parameter model. In the framework of this study,
28 different data segments were subject to the HMM analysis.
In all 28 cases analyzed, use of six to eight states of the HMM
was sufficient to discriminate among the different modes and
stimuli. Using more states did not provide any better discrim-
ination and required more training data.

It should be noted that no claim is being made concerning
any biological significance of the obtained number of states.
The number of states is merely a consequence of the quality
and duration of the recorded data. The obtained segmenta-

IlWe stress that this report does not relate to the process of learning
anything new, but to the sequence of states through which the neural
networks (in which the recorded neurons might be embedded) pass,
while the monkey performs a task with which it is familiar.
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tion, however, reflects a coarse-grained picture of the under-
lying cortical dynamics.
The significance of the obtained state sequence was verified

by the consistency of the procedure. Essentially the same states
and segmentations were obtained when the model was trained
on different (non-overlapping) portions of the recording day
and from different random initial conditions.

Segmentation of Cortical Activity

Once the model was constructed, it was possible to segment the
activity which followed a single stimulus presentation (Fig. 2A)
into a sequence of states. Fig. 2B illustrates the segmentation
obtained with the supervised method, and Fig. 2C illustrates
the segmentation of the same data by the unsupervised
method. Due to the coarse time resolution of the second
method, the transitions in state probabilities were not as sharp
as in the first method, but the same states apply globally to all
the data and not just locally, following the visual cue.
Both algorithms did indeed parcel the activity into time

segments which belonged to different states. Notice that the
transitions were sharp and that there was almost always one
state which was much more probable than the others. The
steep transitions seen in Fig. 2B genuinely support the idea of
fast flips from state to state. In most cases, the sharp transitions
were not due to a change of activity of a single neuron but to
a change in the vector activity of several units. This emphasized
the benefits of our vector signal-processing approach.

Is this sharp flipping from state to state (Fig. 2B) a real
property of the data or an artifact of the HMM algorithms?
This question was considered by applying the fine-time-
resolution HMM analysis to surrogate spike trains, obtained by
simulating the spike trains as nonhomogeneous Poisson pro-
cesses with 1-ms refractoriness. The time-variable firing rates
in the simulation were those obtained by the PSTH of the real
data.
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FIG. 2. (A) Firing times of six neurons during 4 s after a light blink
from the right. A total of 93 trials of this kind (excluding the one shown
here) were used to construct an HMM which maximizes the likelihood
of the observed activity. (B) Probabilities of being in any one of the six
states of the model given the spiking times shown at the top. Parameter
estimation was carried out under the supervised method. (C) Similar
segmentation of the same data, according to a model constructed by
the unsupervised method. The similarity between the two segmenta-
tions is an indication of the "global" nature of the states.

In the real data, the states flipped 1-3 times every second.
Sixty-nine percent of the time, the current, most likely state
had a probability above 0.8. In the surrogate data, the prob-
ability was above 0.8 for only 21% of the time. Thus, the sharp
transients and high probabilities of one of the states, as seen
in Fig. 2B, are a genuine property of the data and not a
by-product of the HMM analysis.

Prediction of Behavior

To assess the specificity of the supervised HMM to the
monkeys' behavior, we constructed supervised HMMs for data
after the blink from the right or the left. This was done for both
the GO and the NO-GO modes. Each trial, in its turn, was
excluded from the training data, and then its likelihood under
the four models was evaluated (10). When the obtained
likelihood was highest for the model trained in the appropriate
category, we considered the classification successful.
The data included only 4 s of activity which followed the

visual cue and preceded the monkeys' response. Nevertheless,
the HMM predicted these responses in 987 of the 1099 trials
in which the monkeys responded correctly. When the likeli-
hood of the 99 trials in which the monkey actually made an
error was estimated, the HMM could predict the monkey's
failure in 46 cases. In summary, the HMMs trained for the four
data classes could predict the true reaction of the monkey in
each trial with 90% accuracy.

Is the predictive power of the HMM better than what might
be obtained with standard methods used by physiologists? To
answer this question, the modulations of firing rates of each
neuron following each of the four stimuli were evaluated by
means of the PSTH, which described the data as a NHPM with
deterministic rates. Once more, the likelihood of the data of
each trial was estimated under the four NHPMs and classifi-
cation was carried out according to the maximum likelihood
model. In this method, the correct responses could be pre-
dicted for 990 trials. The NHPM could predict erroneous
responses for 35 trials of the 99 actual errors. Thus, the NHPM
could predict the monkeys' response just as well as the HMM.
The two models presented here, the NHPM and the HMM,

are similar when the activity of only one neuron and one type
of stimulus are considered. Although the two models look very
different, one corresponds to deterministic changes in firing
rate, and the other to stochastic changes, they are essentially
the same in some limit. In a hidden Markov process with a large
number of states and unidirectional transitions, the transitions
are almost continuous and deterministic, essentially as in a
nonhomogeneous Poisson process. This is how Radons et al.
(8) treated their experimentally recorded visual activity. On
the other hand, a nonhomogeneous Poisson process in which
the underlying rate function is allowed to have a variable delay
of onset and whose duration and amplitudes can be squeezed
or stretched (time and amplitude warping) could well accom-
modate data that are generated by a hidden Markov process.
The method of choice depends on the hypotheses about the
underlying cortical processes and on parsimony. With the type
of data presented here, the HMM adequately explained the
data with smaller number of parameters.
The analysis of the data that followed the visual cue supports

both the notion of discrete states, better captured with the
HMMs, and the notion of continuous dynamics, for which the
PSTH analysis is more appropriate. The first second or so after
a discrete stimulus is marked by rapid modulations of firing
rates which are locked in time to the stimulus. For this period,
the PSTH analysis is appropriate. However, later on, when the
activity indicates sharp transitions among quasi-stationary
states with very poor time locking to the stimulus (such as the
transitions between states 5 and 6 in Fig. 2), the HMM is more
appropriate. Moreover, the HMM analysis indicates that the
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same states consistently reappear during most of the recorded
activity, not just in the first seconds following the stimulus.

Collective Cortical Transitions

The HMM is clearly advantageous in its ability to handle the
multielectrode recording as a vector Poisson process. The
advantage of the joint processing of the simultaneous firing
rates of all the neurons by the HMM is demonstrated in the
data shown in Fig. 2. Careful examination of the firing patterns
of neurons 2 and 5 in the top figure reveals that the spike
counts of both neurons were altered together around the first
and third seconds. Such comodulations of the spike patterns
are a hallmark of the vector Markov process.
To test the generality of this observation, we treated tran-

sitions between states as stimuli and computed the PSTHs of
the unit activity around these points. This analysis was carried
out first for the transitions revealed by the fine-time-resolution
(1 ms) method. Since the firing modulations within the first
second after the cue could be also described adequately by
assuming a nonhomogeneous Poisson process, we concen-
trated on transitions occurring between the second and fourth
seconds after the stimulus. In this period, the average firing
rate of the accumulated PSTH was constant.

Fig. 3A andB illustrates this type of analysis. They show that
the firing rates of neurons 1, 2, 4, and 5 changed concomitantly
around the transition from state 5 to state 6. Neurons 3 and 6
did not alter their firing rates around this point of transition
and are thus not shown. The noisy nature of the firing process
and the low firing rates (below 10 Hz) dictated the usage of a
20-ms-wide bin for constructing the PSTHs. Thus, the appar-
ent transition time of 20-40 ms should be regarded as an upper
bound.
Another advantage of the HMM is its ability to segment the

entire data stream into states with similar activity in an
unsupervised manner-i.e., without any knowledge of stimuli
or movement times. Unlike the PSTH analysis (based on the
NHPM), where the statistics come from the alignment of many
different recordings by the external stimulus, the unsupervised
HMM can collect information from various parts of the
recording, irrespective of their location relative to the stimuli.
The coarse-time-resolution method used a 500-ms window,

which was advanced in 100-ms steps. Therefore, it cannot
position the transition time accurately enough. Nevertheless,
we obtained a direct measure of the sharpness of the transi-
tions from the probabilities that two adjacent data slices were
generated by the same vector Poisson process, independent of
the HMM analysis. We considered all the transitions between
a specific pair of states and collected the spike trains of all the
neurons recorded during these transitions within a range of
1000 ms (-500 ms to +500 ms). The range of the accumulated
activity was broken down into slices of width 32 ms. For each
neuron, there were 31 slices, and for each such slice, the
average firing rate of the neuron was calculated. Using the
Poissonian assumption for each neuron, we calculated the
probability that the nth slice has the same statistical origin as
the (n - 1)th slice.

It can easily be seen that close to the transition point, as
marked by the HMM, the probability that the two adjacent
slices are not of the same statistical origin is significantly higher
than anywhere else in that region. Furthermore, this phenom-
enon is clearly a collective effect of most of the measured
neurons and is hardly noticeable for a single neuron in this
group.
Concomitant changes of firing of several neurons around the

transition point were observed in all the cases examined in this
way. Most frequently, all the changes of firing rates were in the
same direction. Occasionally, one of the neurons decreased its
firing rate while the others increased it, or vice versa.

A

c

Transition between states

-200 0
Time (ms)

FIG. 3. Concomitant changes of firing rates around the transition
from state 5 to state 6. (A and B) A total of 46 transitions from state
6 to state 5 in the GO mode following a cue from the right for which
the HMM stayed at least for 200 ms in each of the states were marked
as a "stimulus." A PSTH around this stimulus was computed for all the
recorded neurons by using a time bin of 20 ms. The PSTHs for the four
neurons that changed their firing rates around this transition are shown
in A. The average probability of being in these two states is shown in
B. (C) Probability of a transition between states 1 and 2 of the HMM
is estimated directly in the coarse temporal resolution. All 374
transitions from state 1 to 2 were aligned as an event. Spike counts
from -500 to +500 ms around this event were calculated in 32-ms-
wide bins. The probability of transition is estimated as follows: 1 minus
the probability that the counts in the nth bin originated from the same
Poisson process that generated the counts in the n -1 bin. This
calculation was carried out separately for each neuron. Assuming
(conditional) independence of the neurons, the probabilities of re-
maining in the same state were multiplied to obtain the likelihood of
no transition at this point. The connected line is the probability of
corresponding transition during this time, based on the firing of all the
neurons. The different symbols represent the probabilities of transition
based on the firing of individual neurons.

State-Dependent Pair-Wise Cross-Correlations

A striking evidence for the validity of the segmentation
provided by the HMM are the state-dependent cross-corre-
lations, revealed by the unsupervised segmentatio'n (Fig. 4).
The assumption that the network has different sets of orga-
nized activity was tested by studying the cross-correlations
between pairs of neurons in the different states (17). The data
was subjected to the coarse-time-resolution HMM analysis.
Intervals in which the activity stayed in the same state for more
than 1 s were pulled together, and the cross-correlations
between all the pairs of neurons were computed. This type of

Neurobiology: Abeles et al.

+ x +
+ x

0
0 xx 0

+
* )K )K X9 x c

)KX * )K

A 4W 0WI 11 6 2. 00 -.0 + 6. 8 Aa 0 )



8620 Neurobiology: Abeles et al.

State 1 State 2
T= 426. R-8 = 9.56 R5 = 0.39 T= 862. R8 = 2.33 R5 = 0.17

20

-300 300
State 3

T= 487. R8 =1 6.87 R5 = 0.23

State 5

II.

300

T= 605. R8 =7.13 R5 = 0.19
2al

,v
e-3 Time (msI 3.

5) . Afillll

-300 Time (ins)

AI

-300

T= 66.
60

hi
11 .liJIfII 'A --.. ..

State 4
R8 =1 2.98 R5 = 0.56

-300

State 6
T= 316. R8 =39.44 R5= 0.32
60

-300- l m(rv m

-300 Time (ms~)

near the origin, indicating temporal relations between the
firing times of the two neurons in at least one state. For most
of these pairs (25 of 26 pairs), the cross-correlation shapes
were clearly related to the HMM states, showing a clearly flat
correlation for some other states (Fig. 4). Thus, although the
reconstruction of the HMM was based only on the expected
firing rates in 500-ms windows, it also captured the dynamics
of the cross-correlations among the neurons on a much finer

300 time resolution.* *
This observation strongly supports the idea that neural

networks in the brain dwell most of the time in stable config-
urations of activity ("attractors" or "states"), each having

------- distinct firing rates and neuronal interactions. The HMM
analysis enables the researcher to reveal these internal brain
states and to track the computation processes, expressed as
transitions between these internal states.

**We note that a recent study of the pair-wise correlations by means
of joint peristimulus histograms of the same data showed that the
cross-correlations changed dynamically within 20-40 ms and are
stable for periods of 200-500 ms (18).

300

300

FIG. 4. An HMM with six states was constructed for all the trials
in which the monkey performed according to the GO mode. Cross-
correlations between neurons 5 and 8 were computed separately for
each state. The graphs show the firing rates in spikes per second of
neuron 8 (R8) around the time that neuron 5 (R5) fired. The dotted
lines mark the band which is expected to contain 99% of the data for
two, independent Poisson processes. The three numbers above each
graph are the total time spentI in the state and the firing rates of
neurons 8 aiid 5. The activity of the neurons in state 6 was considered
as being uhcorrelated, and the graphs for States 2 and 3 indicated
positive correlations between the neurons. The graph for state 4 was
judged as having too little data and was not considered for further
analysis. States 1 and 5 were not taken into consideration in estimating
the modifiability of the cross-correlations between neurons 5 and 8
because the shapes of the cross-correlograms (flat or nonflat) could
not be categorized unequivocally.

analysis was repeated for five different groups of neurons
recorded on different days. Altogether, the cross-correlations
among 114 pairs of neurons were computed, each in six to eight
possible states. Fig. 4 illustrates the cross-correlations of one
pair of neurons in different states. The limited recording time
in each state (a few hundreds of seconds) and the low firing
rates of most cortical neurons yield rather noisy cross-
correlations. Despite this noisiness, one can observe which
correlations are clearly nonflat-e.g., states 2 and 3 in Fig.
4-and which are clearly flat-e.g., state 6 in Fig. 4.
Only when a pair of neurons changed their interaction from

a clearly flat to a clearly nonflat cross-correlation did we
consider them as exhibiting a modifiable cross-correlation.
Twenty-six pairs of neurons showed a clear peak or a trough
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